Carleson and Vanishing Carleson Measures on Radial Trees
نویسندگان
چکیده
We extend a discrete version of an extension of Carleson’s theorem proved in [5] to a large class of trees T that have certain radial properties. We introduce the geometric notion of s-vanishing Carleson measure on such a tree T (with s ≥ 1) and give several characterizations of such measures. Given a measure σ on T and p ≥ 1, let Lp(σ) denote the space of functions g defined on T such that |g|p is integrable with respect to σ and let Lp(∂T ) be the space of functions f defined on the boundary of T such that |f |p is integrable with respect to the representing measure of the harmonic function 1. We prove the following extension of the discrete version of a classical theorem in the unit disk proved by Power. A finite measure σ on T is an s-vanishing Carleson measure if and only if for any real number p > 1, the Poisson operator P : Lp(∂T ) → Lsp(σ) is compact. Characterizations of weak type for the case p = 1 and in terms of the tree analogue of the extended Poisson kernel are also given. Finally, we show that our results hold for homogeneous trees whose forward probabilities are radial and whose backward probabilities are constant, as well as for semihomogeneous trees.
منابع مشابه
New results on p-Carleson measures and some related measures in the unit disk
We provide some new sharp embeddings for p-Carleson measures and some related measures in the unit disk of the complex plane.
متن کاملBesov spaces and Carleson measures on the ball
Carleson and vanishing Carleson measures for Besov spaces on the unit ball of CN are defined using imbeddings into Lebesgue classes via radial derivatives. The measures, some of which are infinite, are characterized in terms of Berezin transforms and Bergman-metric balls, extending results for weighted Bergman spaces. Special cases pertain to Arveson and Dirichlet spaces, and a unified view wit...
متن کامل[ m at h . C A ] 1 0 Ju n 20 02 CARLESON MEASURES , TREES , EXTRAPOLATION , AND T ( b ) THEOREMS
The theory of Carleson measures, stopping time arguments, and atomic decompositions has been well-established in harmonic analysis. More recent is the theory of phase space analysis from the point of view of wave packets on tiles, tree selection algorithms, and tree size estimates. The purpose of this paper is to demonstrate that the two theories are in fact closely related, by taking existing ...
متن کاملEquivalence between the Boundary Harnack Principle and the Carleson Estimate
Both the boundary Harnack principle and the Carleson estimate describe the boundary behavior of positive harmonic functions vanishing on a portion of the boundary. These notions are inextricably related and have been obtained simultaneously for domains with specific geometrical conditions. The main aim of this paper is to show that the boundary Harnack principle and the Carleson estimate are eq...
متن کاملCarleson Measures on Dirichlet-type Spaces
We show that a maximal inequality holds for the non-tangential maximal operator on Dirichlet spaces with harmonic weights on the open unit disc. We then investigate two notions of Carleson measures on these spaces and use the maximal inequality to give characterizations of the Carleson measures in terms of an associated capacity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012